High-Endurance Bulk CMOS One-Transistor Cryo-Memory

A. Zaslavsky^{1*}, P. R. Shrestha², V. Ortiz Jimenez², J. P. Campbell², and C. A. Richter²

1 School of Engineering, Brown University, Providence, RI 02912, USA 2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Most proposed solid-state quantum sensing and computation schemes require cryogenic operation; any large-scale quantum circuitry will need integration with local CMOS-based control, storage, and data processing. We have previously reported on a compact bulk CMOS one-transistor (1T) memory that operates below 10 K via body charging due to impact ionization (II), with long retention times and very high \sim 10⁷ *I*₁/*I*₀ memory window in quasistatic measurements [1]. Here we present the endurance and retention characteristics measured at 7 K in high-speed measurements.

Figure 1 summarizes the operating principle of the memory implemented in NMOS: at $V_D > 1.5$ V, as V_G is swept above V_T , II at the drain creates holes that charge the body to V_B and cannot leave without a low-impedance path to ground. These charges cause a threshold shift, creating positive feedback that switches I_D to a high value. Sweeping V_G back to zero traces out a loop, see Fig. 1(b), with a high \sim 10⁷ ratio between *I*₁ and *I*₀ at *V*_G = 0.3 V. The retention time τ , extracted from the decay of *V*_B in Fig. 1(c), exceeds 10 minutes at 3 K in quasistatic measurements.

To test the endurance, speed, and retention time, the device was characterized at $T \sim 7$ K with fast time-domain measurements [2] in a low-*T* probe station with 50 Ω terminated probes and ~10 ns risetime voltage pulses, as shown in Fig. 2, together with the write/sense pulse sequence. The fast measurement noise floor was $\sim 0.15 \mu A$, reducing the memory window compared to Fig. 1(b). Even so, a 100 cycle test program yielded a memory window of >1000 X above the noise floor, as shown in Fig. 3(a). Figure 3(b) shows long-term endurance: continuous write '1'/write '0' cycles were applied for 10^3 - $10⁹$ cycles, interspersed with the same 100-cycle memory test program. Setting the memory window at 250 X the noise floor, we find the device does not appreciably degrade over 10^9 cycles.

Figure 4 shows the retention time extracted from I_1 current sensing measurements as a function of hold time after write '1' (the '0' state has an uncharged body and is inherently stable, so I_0 is due to the noise floor). If the required I_1/I_0 window is set at 250 X, the retention time $\tau > 1$ s, whereas at 30 X $\tau >$ 10 s. These retention times are long on the quantum sensing or computation time scale (a comparable FD-SOI 1T memory using GIDL body charging [3] used a memory window of 2 X). However, they are shorter than $\tau \sim 800$ s obtained in the quasistatic measurement of Fig. 1(c) that used a $>10^{14} \Omega$ input impedance electrometer to measure V_B . This difference is due to substrate leakage during measurements as confirmed in Fig. 5, where τ extracted with an added 10 or 100 GQ input resistor is \sim 10 s and 56 s. In a 1T memory with no substrate contact we thus expect $\tau \sim 800$ s, essentially nonvolatile.

- [1] A. Zaslavsky, C. A. Richter, P. R. Shrestha, B. D. Hoskins, S. T. Le, A. Madhavan, and J. J. McClelland, *Appl. Phys. Lett.* 119 (2021) 043501.
- [2] P. R. Shrestha, A. Zaslavsky, V. O. Jimenez, J. P. Campbell, and C. A. Richter, submitted to *J. Electron Dev. Soc.* (2024).
- [3] W. Chakraborty, R. Saligram, A. Gupta *et al*., "Pseudo-static 1T capacitorless DRAM using 22nm FDSOI for cryogenic cache memory," in *Intern. Electron Dev. Meeting (IEDM)* (2021) pp. 40.1.1-40.1.4.

^{*} Corresponding author: alexander_zaslavsky@brown.edu

FIG. 1. (a) Schematic diagram of impact-ionizationinduced charging of NMOS transistor body with holes for $V_D > 1.5$ V; (b) corresponding hysteretic loop in the $I_D(V_G)$ at $T = 3$ K and $V_D = 1.8$ V; (c) ~10 minute long decay of body potential V_B measured with a $>10^{14}$ Ω input impedance electrometer (adapted from [1]).

FIG. 2. Schematic high-speed measurement set-up in a cryostat at $T \sim 7$ K together with write '1' ($V_D = 2.1$, $V_G = 1$ V) // sense ($V_D = 1$, $V_G = 0.3$ V) // write 0' (V_D $= 1.5$, $V_G = -1$ V) // sense pulse sequence.

FIG. 3. (a) Raw cycling data for 1T NMOS cryomemory at \sim 7 K (L G = 0.18 μ m, W = 10 μ m), with I_1 sense current exceeding the \sim 0.15 μ A *I*₀ noise floor by >1000 X; (b) long term endurance cycling with continuous multiple write '1'/write '0' cycle blocks ranging from $10³$ to $10⁹$ in order of magnitude steps followed by 100-cycle memory test program as in (a).

FIG. 4. Lower bound on retention time τ extracted from *I*₁ sense measurements after hold times of 100 us to 10 s in order of magnitude steps.

FIG. 5. Measured retention τ dependence on the input impedance of the measurement system.