Si/Ge1xSny/Si transistors with highly transparent Al contacts
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The introduction of GeSn as a channel material, with its modulated band structure and high carrier
mobilities for both electrons and especially holes, is promising for optoelectronics and Beyond- CMOS
technologies with high on-state conductance as well as low power cryogenic applications. [ 1] Therefore,
forming high-quality contacts to the GeSn is of utmost importance. In this regard, we investigate the Al
contact formation to nanosheets composed of thin Ge.«Snx layers with Sn concentrations from 0.5% to
4%. The nanosheets are patterned from vertical Si/Ge1.xSn,/Si heterostructures (Fig. 1), grown on SOI
substrates by molecular beam epitaxy (MBE) at ultra-low temperatures of 175°C, adapted from the
SiGe growth in [2]. Utilizing a thermally induced exchange reaction [3] between Al and Si/Ge;.xSny,
monolithic metal-semiconductor-metal lateral heterostructures with abrupt Al-Gei«Sny junctions are
formed (Fig. 2). Implemented in field-effect transistors, the electrical transport is investigated (Fig. 3),
revealing linear IV-characteristics, suggesting highly transparent quasi-ohmic contacts. The transfer
characteristics show a very dominant p-type conduction, which can be attributed to strong Fermi level
pinning to the valance band and potentially also to hole-gas formation between the 4 nm thin Ge;xSnx
layer sandwiched vertically between two Si layers.[3] Temperature-dependent measurements indicate
that at cryogenic temperatures, the GeixSnx channel can be sufficiently depleted due to fewer thermally
excited states at V> 0. This results in a drain current modulation over three orders of magnitude, while
the on-currents remain mostly temperature-independent, making the system especially interesting for
cryo-CMOS applications. The comparison of nanosheets with different stoichiometries (Fig. 4) shows
that an increased Sn content enhances conductivity, over 20x higher vs. a control sample with a pure
Ge layer in agreement with an accumulation channel. However, the off-state is given by depletion
implying a Vg dependent overall gate capacitance accompanied with degraded Io./lo ratios and
subthreshold slopes. To decouple the influence of the carrier injection barrier and the channel
conduction, a multi-gate structure, featuring a junction gate (JG) atop the Al- Ge xSny interfaces and a
channel gate (CG) in the middle of the Ge;xSny channel, is investigated (Fig. 5). Thereby, it was found
that keeping Vg at -5 V and sweeping Vcg, the on-state resistance can be improved by a factor of ~40.
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Fig. 1: (a) Schematic of the epitaxially grown Si/Ge;«Sn,/Si heterostructure on SOI, with AFM surface
topography of the substrate containing 0.5% (b) and 4% Sn (c). The root-mean-square surface roughness of four
substrates with different Sn contents (0.5%, 1%, 2%, 4%) and the base SOI substrate are compared in (d).
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Fig. 2: (a) Microscope image of the formed Al-Si/Geo.90Sno o1 heterostructure after the thermally induced exchange
reaction. (b) HAADF-STEM image with EDX overlay of the axial cut at the Al-Si/GeSn interface, indicated in
(a). (c)-(f) Single elementary EDX maps.
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Fig. 3: (a) Linear gate dependent I/V characteristic of a
top-gated Al-Geo.osSnoo2 heterostructure shown in the
inset. (b) Temperature dependent transfer characteristic

at Vps =20 mV.

Fig. 4: (a) Comparison of the gate dependent
conductivity of samples with different Sn content,
including a reference sample with a pure Ge layer.

(b) Ion/Iofr ratio and subthreshold slope (STHS) vs Sn
content, at 295 K and 77 K.
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Fig. 5: (a) Schematic and (b) microscope image of a multi-gate structure with 2% Sn. Junction gate (Vig)
dependent transfer characteristic, with the inset showing the change in on-state resistance (Ron). (b) Temperature
dependent transfer characteristic for Vig =-5 V (solid) and Vi =5 V (dotted line).



