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Abstract—In this paper, we present a method of 
implementing memristive crossbar array with bimodally 
distributed weights. The bimodal distribution is a result of 
pulse-based programming. The memristive devices are used 
for the weights and can only have an ON (logical "1") or an 
OFF (logical "0") state. The state of the memristive device 
after programming is determined by the bimodal 
distribution. The highly efficient noise-based variability 
approach is used to simulate this stochasticity. The 
memristive crossbar array is used to classify the MNIST 
data set and comprises more than 15,000 weights. The 
interpretation of these weights is investigated. In addition, 
the influence of the stochasticity of the weights and the 
accuracy of the weights on the classification results is 
considered. 
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I.  INTRODUCTION

Memristive devices (MDs) are non-volatile memories 
and are considered promising candidates for the 
development of hardware-based artificial neural networks 
(ANNs) [1][2]. The MDs can be in one of the two: states 
low-resistive-state (LRS) and high-resistive-state (HRS) 
[3]. During the SET process, the MD is switched to LRS, 
which corresponds to a logical "1". The RESET process 
switches the MD to HRS, which corresponds to a logical 
"0". The MDs exhibit stochastic fluctuations which result 
in device-to-device and cycle-to-cycle variability [4]. This 
stochasticity variability can be simulated using the Noise 
Based Variability Approach (NOVA) [5]. ANNs can be 
implemented as a memristive crossbar array, whereby a 
single cell, consisting of two MDs, functions as a weight 
with possible values from -1 to +1 [6].  

II. SETUP OF THE MEMRISTIVE CROSSBAR ARRAY AND 
PROGRAMMING SCHEME 

To classify the MNIST data set (images consisting of 
28x28 pixels), the memristive crossbar array consists of 
784 inputs, 10 outputs and 15,680 memristive cells (as in 
[5]). In the simulation, the MDs are considered as simple 
fluctuating resistors for simplicity. Two memristive cells 
are required to design a weight W between -1 and +1: one 
G+ and one G− cell (see Eq. 1 for calculation). 

𝑊𝑊 =  𝐺𝐺+ − 𝐺𝐺−  Eq.1 

The required weight values come from the software 
training. The memristive cells are programmed by 
applying pulses, which can be changed in terms of 
amplitude, pulse width and number of pulses [7]. The 
starting point is that the weights are set via "probabilities". 
The MDs can only become the logical values "0" and "1" 
and their state changes with a certain "probability" 
depending on the pulses applied. Accordingly, their 
conductivity follows a bimodal distribution. For each 
applied pulse, the state of the memristive cell can be 
represented via a bimodal distribution (how many devices 
are statistically in the HRS and in the LRS) [8]. In [9] it is 
shown that the statistical variation resulting from a 
superposition of many bimodal distribution functions can 
be represented by the superposition of Gaussian 
distribution functions. This allows the replacement of the 
bimodal distributions with Gaussian distributions for the 
usage of NOVA to simulate the fluctuations of the MDs as 
in [5]. The simulations are carried out with the Spectre 
simulator Cadence Virtuoso. After the simulation, the 
winner is determined according to the winner-takes-all 
principle as in [10]. 

III.  INTERPRETATION OF THE WEIGHT DEFINITION FROM 
PULSE PROGRAMMING 

A pulse with a pulse width of 1 µs and an amplitude of 
0.8V is defined for programming the devices. This pulse 
is sent 100 times to 128 different cells that are in the HRS 
before the first pulse. A MD can therefore be in the HRS 
state or in one of the 100 programming states depending 
on the number of applied pulses (measurement data from 
[7]). To be able to use NOVA, an average value and a 
standard deviation are calculated for each programming 
state using the 128 measured curves. According to Eq. 1, 
two MDs are required for a weight W, whereby a weight 
W can be composed according to figure 1 (a).  

Figure 1 (a) Representation of the 10,201 possible weights within the  
-1 to +1 range in the 101x101 matrix via paths. (b) Possible discrete
weight values within the -1 to +1 range depending on the selected

path. 



Paths (e.g. C1 and C2) can be formed within this matrix, 
which must be set for the range from -1 to +1 for G+ and 
G−. However, it is noticeable that the values of G+/G− do 
not increase continuously from HRS to the 100th pulse, 
which means that the values from -1 to +1 can also be set 
with different accuracy. This is illustrated in figure 1 (b). 
Here the path C1 covers weight values in the range from 
-1 to -0.5 and +0.5 to +1 with high accuracy, whereby C2
provides a higher resolution in the range from -0.5 to +0.5.

Figure 2 shows the standard deviation of each possible 
weight W. Here it can be seen that path C1 has lowest 
standard deviations and C2 has the highest standard 
deviations. 

Figure 2 Visualization of the resulting standard deviation for each 
possible weight to be set.  

IV. SIMULATION RESULTS OF THE MEMRISTIVE CROSSBAR
ARRAY

The memristive crossbar array is tested with the same
images of a "7" and a "4" as from [5] (programming of 
weights by conductance level), as well as the image of a 
"1". For all cases, the weights are trained with a resolution 
of 0.1 weight stepping. The paths C1 and C2 are compared 
by adjusting the target weight to the closest possible value 
(see figure 1(b)). The results are shown in Table 1, as 
percentage of classifying the given number as a winner. 

Table 1 Classification results of the images of a "7", "4" 
and "1" with path C1 and C2. The expected result is mar-
ked in green and the result with the highest probability is 

marked in blue. 

 

Table 1 shows that path C2 delivers significantly worse 
classification results than path C1. The reason for this is 
that the variability in the weights is very large for path C2, 
which means that no precise classification is possible. The 
three digits are all classified with a similar probability. In 
contrast, in path C1 the "7" is classified correctly with 
87.84% (in [5] in the worst case 99.4% and best case 

100%) and the "1" with 76.74%. The "4" is misclassified 
in most cases and is most frequently identified as a 7. In 
[5], this "4" is correctly classified in the best case with 
50.44%. 

Two factors play a role in the result of the programming: 
1) The possible fluctuation of the desired weight value and 
2) the number of adjustable weights or the accuracy of
how finely resolved they should be set.

Path C1 was selected for testing the "1" image, with 
weights set to increments of 0.1, 0.05 and 0.025 and noise 
levels of 100% (referred to the statistical variations as 
observed in the measurements), 85%, 67%, 25% and 0%. 
The results are shown in figure 3. 

Figure 3 Illustration of the effect of different increments of the weights 
and a reduction in the variability of the weights. The percentage for the 

correct classification of "1" is given. 

Figure 3 shows that the classification with a step of 0.025 
is better than with 0.1, but the result only improves 
slightly. However, the 0.05 step is worse than with 0.1, as 
the finer discretization leads to weight combinations with 
an increased 𝜎𝜎 . It is noticeable that a reduction of the 
variability provides significantly better classification 
results. Even with a reduction of 1/3, the results are in the 
90% range for all step sizes. 

V. CONCLUSION

The programming via pulses shows strong variability in 
the weight values. As a result, the classification accuracy 
of the MNIST dataset is influenced by the variability 
depending on the G+/ G− settings. In addition, regarding a 
high probability for a correct classification, it is more 
important that the weights fluctuate less than whether they 
can be set precisely. A reduction of the fluctuations 
observed in measurements by 33% already shows 
significant improvements. However, even without 
fluctuations a precise setting of conductance states is 
important to achieve the correct classification results. 

REFERENCES 
[1] C. Zambelli et al., International Memory Workshop, pp. 1-4, 2014. 
[2] P. Huang et al., IEEE Trans. Electron Devices, vol. 64, no. 2, 2017. 
[3] Z. Jiang et al., IEEE TED., vol. 63, no. 5, pp. 1884–1892, 2016. 
[4] A. Kloes et al., Solid-State Electronics, vol. 201, p. 108606, 2022. 
[5] N. Dersch et al., Solid-State Electronics, vol. 209, p. 108760, 2023. 
[6] C. Zambelli et al., ICMTS, pp. 27-31, 2014. 
[7] E. Perez et al., JJAP, vol. 61, no. SM, 2022. 
[8] C. Wenger et al., IEEE EDL, vol. 40, no 4, 2019. 
[9] N. Dersch et al., submitted to IEEE LAEDC, 2024. 
[10] N. Bogun et al., MIXDES, pp. 83-88, 2022.


	I.  Introduction
	II. Setup of the Memristive Crossbar Array and Programming Scheme
	III.  Interpretation of the Weight Definition from Pulse Programming
	IV. Simulation Results of the Memristive Crossbar Array
	V. Conclusion
	References




